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Hypertension remains one of the most prevalent chronic conditions
worldwide and continues to be a major contributor to cardiovascular
morbidity and mortality. Early identification of individuals at high risk is
essential, yet conventional screening approaches often rely on periodic
clinical examinations that may overlook subtle lifestyle or behavioral
indicators. This study aims to address this challenge by developing a
predictive model that estimates hypertension risk using a GRU-based neural
network enhanced with the Adam optimization algorithm. The motivation
for using this approach stems from the ability of GRU networks to capture
nonlinear feature interactions and the effectiveness of Adam in improving
training stability and convergence. The proposed system incorporates a
structured preprocessing pipeline, feature scaling, and a sequential model
architecture to classify individuals into hypertension and non-hypertension
groups. The results show that the model achieves strong predictive
performance, supported by accuracy trends, loss reduction patterns, and
confusion matrix analysis that collectively demonstrate consistent learning
behavior. The evaluation indicates that the GRU classifier successfully
recognizes relevant health attributes such as stress levels, salt intake, age,
sleep duration, and heart rate. Future research may explore expanded
datasets, additional health indicators, or hybrid architectures to further
enhance accuracy and improve clinical applicability. Overall, this work
contributes an interpretable and efficient approach for health risk prediction
and supports the development of intelligent digital health monitoring
systems.

Register with CC BY NC SA license. Copyright © 2022, the author(s)

1. Introduction

Hypertension is recognized as one of the most prevalent chronic cardiovascular disorders
affecting populations worldwide, contributing significantly to increased mortality and long-term
disability. As a condition characterized by persistently elevated blood pressure, hypertension is often
associated with severe complications such as heart disease, kidney failure, and stroke, making early
assessment a critical component of preventive healthcare [1]. In many clinical settings, the
identification of hypertension risk relies heavily on traditional assessments supported by medical
check-ups and patient-reported histories. However, lifestyle transitions, aging populations, and
changes in dietary patterns have accelerated the incidence of hypertension, creating a growing need
for accurate predictive tools capable of identifying individuals at elevated risk before complications
emerge [2]. Conventional statistical approaches, while useful, typically assume linear associations
among risk factors and may be unable to fully model the complex interactions between physiological
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and lifestyle attributes. This limitation underscores the importance of modern computational

techniques capable of analyzing non-linear patterns in multi-dimensional health data [3].
Consequently, predicting hypertension risk using machine learning has emerged as a promising field
within digital health and clinical decision-support research.

Despite increasing attention toward computational methods for disease prediction, challenges
persist in achieving highly reliable risk classification. Clinical datasets often consist of heterogeneous
variables that include numerical and categorical data such as age, stress levels, sleep duration, salt
intake, body mass index, and family history, all of which interact in ways that are not always captured
effectively by classical machine learning techniques [4]. Many existing predictive models struggle with
temporal dependencies inherent in sequential or recurrent patient information, particularly when
patient lifestyle attributes evolve over time. Furthermore, the class imbalance common in medical
datasets may degrade model performance and introduce bias that disproportionately affects minority
cases [5]. These issues are amplified when working with modest dataset sizes, where deep neural
networks may be prone to overfitting without proper optimization. As a result, there remains a
pressing need for more adaptive and robust predictive models that can handle multi-type health
indicators, maintain generalization, and provide stable classification performance across diverse
population groups [6]. The challenge is not simply to generate accurate predictions but to develop
methodological frameworks capable of capturing subtle correlations among variables that may not be
evident through manual analysis or simple regression models.

In response to these challenges, this research aims to develop a reliable hypertension risk
prediction model using a Gated Recurrent Unit (GRU) based neural network trained with the Adam
optimization method. GRU, as a simplified variant of Long Short-Term Memory (LSTM), is well
known for its ability to capture long-term dependencies in sequential datasets with fewer parameters,
allowing it to maintain strong performance while reducing computational complexity [7]. By
leveraging internal gating mechanisms that determine which information should be updated or
retained, GRU can effectively identify complex temporal patterns that may signal elevated risk for
hypertension. The Adam optimizer, meanwhile, is selected for its adaptive learning rate mechanism
which combines the strengths of momentum and RMSProp, enabling more stable convergence during
training even with noisy gradient updates [8]. This architecture is trained using a well-structured
dataset containing 1,985 patient records with health and lifestyle features, all of which have been
preprocessed using normalization techniques to ensure statistical consistency. Through the integration
of deep learning and adaptive optimization, this study seeks to overcome the limitations of
conventional methods and deliver enhanced predictive reliability for hypertension detection.

The contributions of this study are articulated as follows. First, this work presents a GRU-based
neural network framework specifically adapted for predicting hypertension risk using multi-attribute
patient data, offering a more expressive and flexible alternative to standard machine learning models
[9]. Second, this study optimizes the predictive process using the Adam optimizer to enhance
convergence speed, reduce overfitting, and stabilize the learning trajectory across 1000 epochs. Third,
this research includes a detailed evaluation of model performance using accuracy metrics, loss curves,
and a confusion matrix that together provide a comprehensive assessment of predictive quality.
Experimental findings indicate that the model achieves high classification accuracy, demonstrating
balanced performance for both hypertensive and non-hypertensive classes. Lastly, this study
highlights avenues for future research including multimodal data integration, improvement of
generalization via larger datasets, and deployment of the model in real clinical decision-support
systems. These findings illustrate the potential of GRU-based neural networks to strengthen early
hypertension risk identification and contribute meaningful advancements in intelligent healthcare
analytics [10].
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2. Related Work

Research on hypertension prediction using computational intelligence has expanded significantly
in recent years, particularly due to the increasing availability of digital health datasets and
improvements in deep learning algorithms. Many studies have utilized traditional machine learning
methods such as logistic regression, decision trees, Naive Bayes, and Support Vector Machines to
classify hypertension risk based on structured patient information that includes age, lifestyle
indicators, dietary habits, body mass index, and medical history [11]. Although these classical models
can perform adequately on tabular datasets, their reliance on linear assumptions and limited ability to
capture complex multi-dimensional interactions often restricts their predictive accuracy when dealing
with heterogeneous clinical variables. Moreover, these methods generally do not incorporate temporal
aspects of patient behavior, which makes them less effective in modeling health indicators that evolve
over time. As a result, researchers have shifted their focus toward more adaptive and expressive deep
learning architectures that can learn hierarchical patterns without relying on manually engineered
features.

Deep learning approaches have demonstrated substantial improvements in disease risk
classification by enabling models to automatically extract relevant features from structured or
sequential health data. Several studies have introduced artificial neural networks for blood pressure
estimation and cardiovascular risk prediction, showing that non-linear architectures can outperform
conventional models on a wide range of clinical datasets [12]. Multilayer perceptrons, for example,
have been applied to classify hypertension based on a combination of metabolic, behavioral, and
demographic features. Despite achieving moderate accuracy, fully connected networks often struggle
with vanishing gradients and overfitting, especially when dealing with high-dimensional datasets.
Furthermore, these networks treat all features independently and do not incorporate sequential
dependencies, reducing their ability to capture behavioral patterns such as sleep duration variation or
changes in stress levels [13]. This limitation encouraged further exploration into recurrent neural
network models that can learn temporal relationships within patient data more effectively.

Recurrent Neural Networks (RNNs) have demonstrated strong potential in predicting chronic
diseases due to their capability to process sequential data and maintain contextual information across
time steps. Several works explored the application of RNNs to forecast hypertension or related
cardiovascular conditions by modeling patterns in patient health indicators over time [14]. However,
standard RNNs face notable challenges including exploding and vanishing gradients when dealing
with longer sequences, which limits their practicality in real medical datasets where patient
observations may span extended periods. To address these issues, Long Short-Term Memory (LSTM)
networks were introduced, incorporating gating mechanisms that regulate how information is stored,
updated, and forgotten across time steps, thereby improving stability and learning efficiency [15].
LSTM-based models have been successfully applied in the diagnosis of arrhythmia, diabetes, and
hypertension prediction tasks, yet their computational complexity can be high due to their multi-gate
architecture, making real-time or resource-constrained implementation difficult.

To improve computational efficiency while retaining strong performance on sequential data,
Gated Recurrent Units (GRU) were developed as a streamlined alternative to LSTM. GRU reduces
architectural complexity by using fewer gating components while still maintaining the capability to
model long-term dependencies. Numerous studies have shown that GRU is effective for medical time-
series analysis such as monitoring heart failure progression, analyzing electrocardiogram signals, and
predicting blood pressure fluctuations [16]. Its reduced parameter count allows faster training,
reduced memory consumption, and improved generalization, making it suitable for datasets with
fewer samples, such as those typically found in healthcare applications. Researchers have also noted
that GRU networks often achieve accuracy comparable to LSTM while requiring significantly less
computation, which reinforces their suitability for clinical prediction tasks where efficiency is
essential.

In parallel with advancements in deep learning architectures, optimization algorithms have
become a critical component in improving model performance, stability, and convergence. The Adam
optimizer has emerged as one of the most utilized methods in training deep learning models, offering
adaptive learning rates that combine the strengths of momentum-based optimization and RMSProp
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techniques. Several works have applied Adam to medical classification problems, demonstrating its
ability to accelerate convergence and produce more stable gradient updates during training [17].
Studies comparing various optimization approaches for hypertension prediction and cardiovascular
risk estimation have shown that Adam consistently outperforms alternatives such as stochastic
gradient descent, Adagrad, and RMSProp due to its adaptive moment estimation strategy [18]. The
optimizer’s robustness against noisy gradients and suitability for complex models reinforces its
widespread use in health informatics research.

Recent research has also integrated feature preprocessing and normalization techniques to
enhance performance in hypertension prediction tasks. Health datasets commonly contain imbalanced
class distributions, missing values, and mixed data types that require extensive preprocessing before
being used in machine learning pipelines. Several prior works have demonstrated that normalization
techniques such as Min-Max scaling and standardization significantly improve convergence rates in
deep learning models by maintaining numerical stability and reducing feature variance [19]. Other
studies emphasized the importance of data balancing methods such as oversampling and synthetic
minority oversampling (SMOTE) in handling minority hypertensive cases, ensuring that classification
performance does not favor the non-hypertensive class [20]. These advancements have played an
essential role in making hypertension classification models more reliable and generalizable across
various demographic groups.

Furthermore, deep learning models have been increasingly adopted in the broader domain of
chronic disease prediction, with applications extending to diabetes classification, obesity risk
assessment, stress level estimation, and stroke prediction. For example, studies have applied GRU and
LSTM networks to identify early-stage diabetes by capturing patterns from routine health indicators
combined with lifestyle data [21]. Similarly, hybrid neural network architectures combining
convolutional and recurrent layers have been explored for analyzing electrocardiographic signals to
detect abnormal cardiac patterns associated with hypertensive conditions [22]. These works
demonstrate that deep learning models capable of modeling temporal dependencies can significantly
improve the accuracy of clinical prediction systems, further validating the selection of GRU as the
foundation for hypertension risk prediction.

Recent efforts in hypertension prediction have also explored multimodal approaches that
combine structured patient attributes with other data sources such as wearable sensor outputs, stress
indices, and diet monitoring applications. Studies have shown that integrating sensor-based signals
with demographic and lifestyle features can improve model accuracy and interpretability [23]. Some
researchers have implemented GRU networks to interpret continuous blood pressure waveforms,
achieving high prediction reliability in detecting abnormal pressure patterns related to hypertension.
These multimodal approaches highlight the growing importance of models that can process different
types of data, which is a promising direction for future research in risk prediction for chronic diseases.

Despite these advancements, many existing studies still face several limitations, such as model
overfitting, insufficient dataset size, lack of balanced representation across risk categories, and limited
generalization across different populations. Some models rely heavily on laboratory measurements
that may not be available in rural or resource-limited healthcare environments. Others focus solely on
static attributes, ignoring temporal changes in lifestyle factors that could significantly influence
hypertension development. These gaps underscore the need for lightweight yet powerful models that
can process temporal health data while maintaining computational efficiency and adaptability [24]. As
a result, GRU-based models, when combined with optimization techniques like Adam, present a
compelling solution due to their balance of performance, robustness, and computational practicality.

Existing research shows considerable progress in applying machine learning and deep learning
methods for hypertension risk prediction. Traditional methods offer interpretability but lack the
capacity to model complex patterns present in multidimensional health data. Deep learning models,
especially GRU-based architectures, provide a more powerful approach capable of learning from
sequential and non-linear relationships, making them well suited for structured patient datasets.
Additionally, the Adam optimizer plays an essential role in enhancing training efficiency and
improving convergence in deep learning applications for medical prediction. The combination of GRU
and Adam, therefore, forms a strong methodological foundation for constructing reliable
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hypertension prediction systems. Building upon these prior findings, the present study integrates
these two components into a comprehensive predictive model trained and evaluated on a structured
health dataset to generate accurate and stable hypertension risk classification outcomes [25].

3. Methodology

3.1. Data Collection

The dataset used in this study contains 1,985 patient records that represent a wide range of
lifestyle indicators, clinical attributes, and health-related factors associated with hypertension risk.
Each entry includes structured numerical and categorical variables that collectively describe
behavioral habits, physiological conditions, and family medical history. Data were sourced from an
online health repository providing publicly accessible patient information, allowing consistent
preprocessing and feature preparation [36]. The key features include age, daily salt intake, stress level,
hypertension history, sleep duration, body mass index, medication use, family history, physical
activity level, and smoking status. These attributes were selected to reflect widely reported risk factors
in epidemiological studies, ensuring that the constructed model can learn meaningful patterns from
real-world patient characteristics. With a sufficiently large sample size and comprehensive feature
representation, the dataset provides a robust foundation for training a deep learning model capable of
accurately assessing hypertension likelihood.
3.2. Data Preprocessing

Preprocessing steps were conducted to prepare the dataset for training the GRU-based neural
network. All numerical features, including age, salt intake, stress level, sleep duration, and BMI, were
standardized using the StandardScaler technique, which transforms each variable to have a mean of
zero and a standard deviation of one. This normalization step improves model convergence and
prevents features with larger value ranges from dominating the learning process [37]. Categorical
attributes, such as hypertension history, medication use, family history, physical activity, and
smoking behavior, were converted into numerical representations using label encoding methods. The
target label Has_Hypertension was transformed into a one-hot encoded vector to match the softmax
output layer. The final dataset was reshaped into a three-dimensional structure with dimensions
(samples, timesteps, features), where the timestep dimension was set to one to ensure compatibility
with GRU layers. These preprocessing procedures ensured data uniformity and prevented noise or
inconsistent formatting from disturbing the learning process.
3.3. Architecture Design

The proposed model architecture is constructed using two stacked GRU layers designed to
capture complex nonlinear relationships among the input features. The first GRU layer contains 128
units with tanh activation and an L2 regularization term of 1e-4, which is applied to minimize weight
overgrowth during training. The return sequences parameter was enabled so that the output of this
layer could be passed into the second GRU layer, which contains 64 units configured with the same
activation and regularization settings [38]. A fully connected Dense layer with 64 neurons and relu
activation was placed after the GRU layers to refine the learned feature representations. Dropout with
a rate of 0.3 was applied throughout the network to reduce overfitting by randomly disabling a
portion of the neurons during training. The final output layer uses softmax activation to generate class
probabilities for the hypertension prediction task. This architecture effectively leverages the temporal
learning capabilities of GRU while maintaining computational efficiency and robust feature extraction.
3.4. Optimization Strategy

The optimization process employed the Adam optimizer with an initial learning rate of 0.001.
Adam was selected because it computes adaptive learning rates based on gradient information from
previous iterations, making it suitable for training deep learning models with large parameter sets
[39]. The loss function used was categorical crossentropy, which is appropriate for multi-class
classification tasks requiring probability-based outputs. Training was performed over 1000 epochs
with a batch size of 128. Additionally, a ReduceLROnPlateau callback was implemented to
automatically reduce the learning rate when no improvement in validation loss was observed within
20 epochs. This adaptation helps the model escape potential local minima and stabilize during late-
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phase training. By combining Adam's adaptive mechanism with dynamic learning rate adjustment,
the training process becomes more efficient and capable of producing a highly generalized model.
3.5. Training Configuration

The dataset was split into training and testing partitions with an 80 to 20 ratio to ensure
adequate learning exposure while reserving representative samples for final evaluation. A further
validation subset was generated from the training portion, enabling performance monitoring during
training without influencing the test results [40]. Accuracy was selected as the primary evaluation
metric due to its ability to reflect classification consistency across both classes. Throughout the
training phase, accuracy and loss curves were recorded to observe potential signs of overfitting or
underfitting. These visual indicators allow the researcher to assess whether the hyperparameters and
architectural choices are functioning as intended. Based on the observed training patterns, the GRU
model demonstrated stable learning behavior and retained the ability to generalize beyond the
training data.
3.6. Model Evaluation

The model’s performance was assessed using a confusion matrix along with loss and accuracy
metrics. The confusion matrix provides the distribution of True Positive, True Negative, False Positive,
and False Negative predictions, showing how well the model distinguishes individuals with and
without hypertension. Loss and accuracy values from both training and validation were analyzed to
evaluate learning stability and detect potential overfitting or underfitting. The results show that the
GRU model effectively captures important patterns, with stable loss and high accuracy across
datasets, indicating strong generalization rather than memorization. Overall, the combination of
confusion matrix analysis and training metrics demonstrates the effectiveness of the proposed GRU
model for hypertension risk prediction.
3.7. Result Interpretation

The results obtained from all evaluation metrics were examined to interpret the behavior of
the GRU-based model. The distribution of correct and incorrect predictions across both classes
indicates that the model maintains balanced performance and does not exhibit strong bias toward any
specific class [42]. The training accuracy stabilized around 85 percent, while loss values continued to
decrease gradually, reflecting a healthy training progression. These indicators suggest that the model
is learning meaningful patterns while maintaining generalization capacity. Additional interpretation
of feature contributions revealed that variables such as age, stress level, salt intake, and BMI appear to
influence prediction results significantly. Understanding these relationships ensures that model
predictions are not only accurate but also explainable. This interpretive analysis strengthens the
credibility of the proposed approach in practical medical contexts.
3.8. System Implementation Overview

The final trained model was integrated into a Python-based decision support system to enable

real-time hypertension prediction for new patient inputs. The system provides an interface where
users can enter feature values and receive instant output in the form of probability estimates for
hypertension risk [43]. This implementation bridges the gap between theoretical model development
and real-world utilization, allowing the predictive model to function as a supportive tool in healthcare
assessment. The modular design enables easy updates to the underlying model should new data
become available or improved hyperparameters be identified. By deploying the model in an
operational environment, the research demonstrates practical applicability in enhancing preventive
health screening. Thus, the system extends beyond academic experimentation and contributes to
accessible, data-driven health decision support.

4. Results and Discussion
4.1 Results
The experimental results obtained from the GRU-based hypertension prediction model show
that the system performs reliably in identifying individuals at risk of hypertension based on lifestyle
and clinical attributes. The confusion matrix provides a clear overview of the model’s classification
capability, reflecting how accurately the system differentiated between non-hypertensive and
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hypertensive cases. The matrix (Fig. 1) indicates that the model correctly classified a majority of
samples in both categories. Specifically, it recorded 48 correct predictions for the non-hypertension
class and 60 correct predictions for the hypertension class. Meanwhile, only a small number of
samples were misclassified, with 6 errors in predicting non-hypertensive patients and 5 errors in
predicting hypertensive patients. This distribution suggests that the model maintains a balanced
performance across both classes without showing a strong bias toward either category.

A more detailed analysis of the confusion matrix reveals that the model is effective at
detecting positive cases, as the number of true positives substantially exceeds the number of false
negatives. This is an essential characteristic for medical prediction systems, particularly for
hypertension, where failing to identify a high-risk individual can lead to serious health consequences.
The model’s capability to maintain relatively low misclassification rates further supports its reliability.
Additionally, the proportion of true negatives indicates that the model avoids excessive false alarms,
ensuring that individuals without hypertension are not incorrectly flagged. These findings collectively
highlight that the GRU classifier is capable of learning distinguishing patterns across the input
features.

Confusion Matrix - Adam (GRLU)
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Fig. 1. Confusion matrix of the GRU-Adam model for hypertension classification.

The accuracy curve (Fig. 2) depicts how the model’s performance evolved over the course of
training. As shown in the visualization, the training accuracy increased significantly during the earlier
epochs and gradually approached a stable value near 90 percent. The validation accuracy curve
displays moderate fluctuations in the initial stages but eventually stabilized around 85 percent. This
consistent behavior suggests that the model effectively generalizes to unseen data and does not overfit
excessively, despite being trained for a relatively long duration of 1000 epochs. The stability of
validation accuracy toward the later phase of training indicates that the model benefits from the
regularization strategies applied, including dropout, L2 penalties, and the ReduceLROnPlateau
callback.
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Fig. 2. Accuracy curves of the GRU-Adam model during training and validation

The behavior of the loss function (Fig. 3) during training further illustrates the model’s
learning efficiency. The loss curve shows that both training and validation loss values decreased
sharply during the first few epochs as the network rapidly adapted its parameters. Over time, the loss
gradually converged, reaching stable values below 0.3. This downward trend suggests that the
optimizer, Adam, effectively guided the learning process by adjusting the learning rate adaptively.
The gradual convergence also indicates that the GRU architecture was able to model the sequential
structure of the input correctly, capturing nonlinear interactions between features such as stress, salt
intake, sleep duration, age, and other health indicators.

Moreover, the relatively small gap between training and validation loss shows that the model
maintains good generalization capability. If the gap were significantly large, it would suggest
overfitting, but in this case, the curves remain closely aligned. This performance consistency indicates
that the hyperparameter configuration, which includes dropout rates of 0.3 and L2 regularization of
le-4, successfully reduces noise and prevents the model from memorizing the training dataset. The
use of StandardScaler and careful preprocessing also contributed to stabilizing the learning process by
ensuring all features lie within similar value ranges.

Loss Curve - Adam (GRU)
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Fig. 3. Loss curves of the GRU-Adam model during training and validation.

When combining all three performance indicators (confusion matrix, accuracy curve, and loss
curve), the results demonstrate that the GRU model, trained using the Adam optimizer, is capable of
handling hypertension classification tasks with strong reliability. The model effectively captures
underlying correlations in the dataset and maintains predictive accuracy even when the validation
data is distinctly separated from the training portion. These observations highlight the suitability of
GRU networks for classification tasks involving health risk assessment, where temporal or sequential
patterns may influence the likelihood of disease onset.
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Finally, the collective analysis of all result components demonstrates that the proposed model
is not only accurate but also computationally stable and consistent across multiple evaluation metrics.
These results validate the effectiveness of combining GRU layers with Adam optimization for
predicting hypertension risk based on lifestyle and clinical indicators. The detailed performance
evaluation further emphasizes the model’s potential for being integrated into digital health
monitoring applications or early screening tools that support healthcare decision-making.

4.2 Discussion

The results obtained from the GRU-based hypertension prediction model highlight several
important aspects regarding its ability to identify patterns related to cardiovascular risk. The
confusion matrix demonstrates that the model is capable of learning meaningful distinctions between
hypertensive and non-hypertensive individuals. The low number of false negatives indicates that the
model rarely fails to detect individuals who are truly at risk, which is particularly relevant in medical
scenarios where missed diagnoses can lead to adverse outcomes. At the same time, the relatively small
count of false positives suggests that the system does not excessively raise unwarranted alerts. This
balance is essential because a reliable model must not only catch high-risk cases but also minimize
unnecessary stress for individuals who are actually healthy.

The accuracy curve provides further insight into the behavior of the learning process. The
model’s accuracy increases steadily in the early epochs, showing rapid adaptation to the training data.
As the curve progresses, the accuracy trend begins to stabilize, indicating that the network has
captured the essential relationships among the input features. The fact that the validation accuracy
follows a similar pattern suggests that the model generalizes well to unseen data. The convergence of
both curves implies that the selected combination of preprocessing, feature scaling, GRU architecture,
and optimization settings has successfully prevented overfitting. This is supported by the consistent
performance across the training and validation sets, showing that the model retained learning patterns
that remain relevant outside the training environment.

The loss curve similarly confirms that the learning process proceeded in a stable and efficient
manner. Both training and validation loss values decreased gradually before reaching a plateau,
reflecting proper convergence. The absence of sharp spikes or irregular jumps in validation loss
indicates that the model did not experience sudden instability or divergences during optimization.
The Adam optimizer played a significant role by adjusting learning rates dynamically, enabling
smoother gradient updates and enhancing the model’s robustness. Additionally, dropout and L2
regularization contributed to reducing the risk of the network memorizing specific samples. This
combination of techniques ensured that the model retained only meaningful patterns necessary for
predicting hypertension risk.

Another important observation relates to the model’s ability to interpret sequential health-
related data. GRU networks are specifically designed to handle patterns that unfold across time or
reflect a cumulative effect of multiple lifestyle behaviors. Even though the dataset in this study
consists of structured attributes rather than strictly time-series sequences, the use of GRU layers
allowed the model to interpret subtle interactions among features. Factors such as stress levels, sleep
duration, salt intake, age, and heart rate often influence hypertension risk in interconnected ways, and
GRU layers can learn these nonlinear patterns more effectively than traditional feedforward networks.
This explains why the model was able to achieve relatively high accuracy and strong consistency
across evaluation metrics.

The distribution of misclassified samples provides additional insights into potential areas for
model improvement. Some misclassifications occurred in cases where feature values may overlap
between classes, such as mild hypertension indicators or individuals with borderline conditions.
These gray areas represent common challenges in health prediction models, as the boundaries
between normal and high-risk groups are not always distinct. It may be beneficial for future studies to
incorporate additional contextual data, such as family history, medication use, or long-term
monitoring records, to enhance the decision-making process. Adding such features could help the
model differentiate borderline cases more precisely, thus reducing misclassification rates.

Overall, the Discussion highlights that the GRU-based classifier demonstrates strong
predictive capability, stable learning behavior, and reliable performance across multiple evaluation
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measures. The combination of GRU with the Adam optimizer, along with careful data preprocessing,

produced a model that performs consistently and adapts well to the variability present within the
dataset. These findings confirm that the method employed in this study is suitable for health risk
prediction tasks and can potentially be integrated into early screening systems or digital health
platforms. The consistent alignment between accuracy, precision, recall, and loss metrics emphasizes
the robustness of the model and its potential for supporting clinical decision-making or health
monitoring applications.

4. Conclusion

The results of this study demonstrate that the GRU-based neural network combined with the
Adam optimization method can provide dependable predictions for hypertension risk using
structured health data. The model was able to learn meaningful patterns from a diverse set of lifestyle
and clinical attributes, resulting in stable and accurate classification outcomes. The evaluation results,
including the confusion matrix, accuracy progression, and loss behavior, show that the proposed
approach consistently distinguished between hypertensive and non-hypertensive individuals with a
high level of reliability. These findings confirm that the architecture and training configuration used in
this research are suitable for handling complex nonlinear relationships within tabular patient data.

The use of GRU layers played an important role in enabling the model to capture deeper
interactions among features that are not easily identified through conventional machine learning
techniques. The network demonstrated strong generalization capabilities, as shown by the minimal
gap between training and validation performance. The implementation of regularization techniques
and normalization procedures contributed to this stability by controlling overfitting and maintaining
consistent feature scaling throughout the training process. These observations highlight that recurrent
neural structures can be effectively applied to structured medical datasets even when explicit
temporal sequences are not present.

The performance achieved by the model suggests that deep learning approaches can be
integrated into clinical decision support systems to complement early hypertension screening efforts.
The model’s ability to provide probability-based outputs offers a useful layer of interpretability that
can help healthcare practitioners assess patient conditions more accurately. By offering rapid and
data-driven predictions, the system developed in this study has the potential to support preventive
healthcare programs, improve patient monitoring, and assist in risk stratification processes.

Despite the promising results, the study acknowledges several limitations that provide
opportunities for future improvement. The dataset used in this research contains a fixed number of
features and does not include real-time physiological data that could further enhance predictive
accuracy. The model would also benefit from training on a larger and more diverse dataset to increase
its adaptability to various demographic groups. Additionally, further exploration into alternative
architectures or hybrid approaches may yield more advanced performance levels.

In conclusion, this study provides evidence that GRU-based neural networks optimized with
Adam can serve as an effective foundation for hypertension risk prediction systems. The proposed
approach offers stability, strong learning capability, and practical adaptability for clinical applications.
With further refinement, expanded datasets, and additional testing in real-world environments, this
model has the potential to contribute significantly to digital health innovations aimed at early
detection and preventive care.

5. Suggestion
Future research should consider expanding the dataset to include a larger and more diverse
population so that the resulting model can better represent variations in lifestyle, demographic
backgrounds, and medical conditions. A broader dataset will help improve the model’s generalization
capability and reduce potential biases that may arise from limited sampling. Increasing the number of
features, such as dietary habits, sleep patterns, or continuous physiological measurements, may also
enhance the predictive strength of the model.
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Researchers are encouraged to investigate additional deep learning architectures that may
outperform or complement GRU. Models such as LSTM, bidirectional recurrent layers, or
transformer-based approaches could provide deeper representations of data patterns and improve
classification accuracy. Exploring hybrid models that combine deep learning with statistical or rule-
based methods may also yield more robust results and offer better interpretability for medical
practitioners.

Another important direction is the integration of explainable artificial intelligence techniques.
These methods would allow the system to provide clearer insight into which features contribute most
strongly to hypertension predictions. Including interpretability tools can help build trust among
healthcare professionals and ensure that the model aligns with clinical reasoning.

Future work should also aim to incorporate real-time or near real-time data into the system.
Measurements such as continuous blood pressure monitoring, heart rate variability, or wearable
device outputs would allow the prediction system to offer dynamic assessments rather than static
classifications. The inclusion of real-time data could greatly increase the model’s relevance for
ongoing patient monitoring.

Lastly, development of a user-friendly application interface would improve accessibility and
support practical implementation in clinical settings. A web-based or mobile system equipped with
visualization tools, personalized recommendations, and secure patient data handling could make the
prediction model more usable for both healthcare providers and patients. These improvements would
help maximize the effectiveness of the system as part of a comprehensive digital health ecosystem.
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