Classification of Tuberculosis and Pneumonia Lung Diseases in X-Ray Images Using the CNN Method with VGG-19 Architecture

Abstract views: 11 , PDF downloads: 13

I Dewa Ayu Sri Murdhani
Heru Ismanto
Didit Suprihanto

Abstract

Tuberculosis (TB) and Pneumonia continue to be among the world’s leading causes of morbidity and mortality, particularly in low- and middle-income countries where access to advanced diagnostic tools remains limited. Conventional radiological interpretation, while effective, heavily depends on the experience and precision of radiologists, resulting in potential subjectivity and diagnostic variability. This study proposes a fully automated classification framework for lung disease detection using a Convolutional Neural Network (CNN) based on the VGG-19 architecture. The model aims to enhance diagnostic accuracy and reliability by leveraging deep learning techniques capable of capturing subtle radiographic patterns that may not be readily identifiable by human observers. A dataset of 3,623 chest X-ray images—divided into Normal, Pneumonia, and Tuberculosis classes—was compiled from Kaggle and Mendeley Data repositories. Preprocessing techniques including Contrast Limited Adaptive Histogram Equalization (CLAHE), cropping, resizing, and normalization were employed to enhance contrast and minimize noise. The model was trained and tested under four data-split configurations (80:20, 70:30, 60:40, and 50:50) to assess generalization capability. The 70:30 configuration achieved optimal performance, recording 96% accuracy, 97% precision, 95% recall, and a 96% F1-score. These findings demonstrate that the VGG-19 model can accurately distinguish between TB, Pneumonia, and Normal cases, providing a reliable foundation for AI-driven medical diagnosis. Future research will focus on dataset expansion, interpretability enhancement using Explainable AI (XAI), and the integration of this model into clinical decision-support systems.

Downloads

Download data is not yet available.
How to Cite
Sri Murdhani, I. D. A., Ismanto, H., & Suprihanto, D. (2025). Classification of Tuberculosis and Pneumonia Lung Diseases in X-Ray Images Using the CNN Method with VGG-19 Architecture. Jurnal Sistem Informasi Dan Komputer Terapan Indonesia (JSIKTI), 8(2), 136-149. https://doi.org/10.33173/jsikti.269

References

[1] World Health Organization (WHO), “Global Tuberculosis Report 2023,” WHO, Geneva, 2023.
[2] World Health Organization (WHO), “Pneumonia,” WHO Fact Sheet, 2022.
[3] A. Rajpurkar, J. Irvin, K. Zhu, et al., “CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning,” arXiv preprint arXiv:1711.05225, 2017.
[4] E. N. Mortani Barbosa, “Computer-Aided Detection in Radiology: Machine Learning and Deep Learning Approaches,” Radiographics, vol. 38, no. 6, pp. 1673–1689, 2018.
[5] G. Litjens, T. Kooi, B. E. Bejnordi, et al., “A Survey on Deep Learning in Medical Image Analysis,” Medical Image Analysis, vol. 42, pp. 60–88, 2017.
[6] Y. LeCun, Y. Bengio, and G. Hinton, “Deep Learning,” Nature, vol. 521, pp. 436–444, 2015.
[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks,” Communications of the ACM, vol. 60, no. 6, pp. 84–90, 2017.
[8] P. R. Dewi, J. Y. K. Harahap, and E. Indra, “Algoritma Deep Learning untuk Pengklasifikasian Penyakit Radang Paru-Paru pada Citra Chest X-Ray dengan Convolutional Neural Network,” Jurnal Teknologi Informatika dan Komputer, vol. 9, no. 1, pp. 14–23, 2023.
[9] R. R. E. Prasetyo and M. Ichwan, “Perbandingan Metode Deep Residual Network 50 dan Deep Residual Network 152 untuk Deteksi Penyakit Pneumonia pada Manusia,” MIND Journal, vol. 6, no. 2, pp. 168–182, 2021.
[10] N. P. Ekananda and D. Riminarsih, “Identifikasi Penyakit Pneumonia Berdasarkan Citra Chest X-Ray Menggunakan Convolutional Neural Network,” Jurnal Ilmiah Informatika Komputer, vol. 27, no. 1, pp. 79–94, 2022.
[11] T. Berliani, E. Rahardja, and L. Septiana, “Transfer Learning dengan ResNet-50 dan VGG-16 untuk Klasifikasi Citra X-Ray Paru-paru,” Journal of Medicine and Health, vol. 5, no. 2, pp. 123–135, 2023.
[12] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recognition,” arXiv preprint arXiv:1409.1556, 2015.
[13] S. A. Saleh, A. A. Albahri, and H. M. Albahri, “Optimization and Validation of Deep Learning Algorithms for COVID-19 Diagnosis Using Chest X-Ray,” Expert Systems with Applications, vol. 167, 2021.
[14] F. Chollet, “Keras: Deep Learning for Humans,” GitHub Repository, 2017.
[15] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” arXiv preprint arXiv:1412.6980, 2015.
[16] P. R. Dewi, J. Y. K. Harahap, and E. Indra, “Deep Learning Algorithm for Pneumonia Detection from Chest X-Ray,” Jurnal Teknologi Informatika dan Komputer, vol. 9, no. 1, pp. 14–23, 2023.
[17] R. R. E. Prasetyo and M. Ichwan, “Comparative Study of Deep Residual Networks for Pneumonia Detection,” MIND Journal, vol. 6, no. 2, pp. 168–182, 2021.
[18] N. P. Ekananda and D. Riminarsih, “Identification of Pneumonia Using CNN Based on Chest X-Ray Images,” Jurnal Ilmiah Informatika Komputer, vol. 27, no. 1, pp. 79–94, 2022.
[19] I. Jawaz and R. Rahmadewi, “Sistem Deteksi Pneumonia Paru-Paru dengan Pengolahan Citra Digital dan Machine Learning,” ELECTRON Jurnal Ilmiah Teknik Elektro, vol. 5, no. 1, pp. 138–146, 2024.
[20] T. Berliani, E. Rahardja, and L. Septiana, “Transfer Learning with VGG-16 and ResNet-50 for Lung Disease Classification,” Journal of Medicine and Health, vol. 5, no. 2, pp. 123–135, 2023.
[21] A. M. Ismael and A. Şengür, “Deep Learning Approaches for COVID-19 Detection Based on Chest X-Ray Images,” Expert Systems with Applications, vol. 164, 2021.
[22] A. Z. Putra, D. V. M. Situmorang, G. Wahyudi, J. P. K. Giawa, and R. A. Tarigan, “Pneumonia Classification Based on Lung CT Scans Using VGG-19,” Sinkron, vol. 8, no. 4, pp. 2458–2466, 2023.
[23] I. Gusmanda, “Deteksi Penyakit Pneumonia Berbasis Citra X-Ray Menggunakan CNN Arsitektur VGG-19,” Telkom University Repository, 2023.
[24] M. Y. Haffandi, E. Haerani, F. Syafria, and L. Oktavia, “Klasifikasi Penyakit Paru-Paru Dengan Menggunakan Metode Naïve Bayes Classifier,” Jurnal Teknik Informasi dan Komputer (Tekinkom), vol. 5, no. 2, pp. 176–182, 2022.
[25] T. Rahman, A. Chowdhury, A. Khandakar, et al., “Transfer Learning with Deep Convolutional Neural Network (CNN) for Pneumonia Detection Using Chest X-ray,” Applied Sciences, vol. 10, no. 9, pp. 3233–3245, 2020.
[26] J. Wang, Z. Liu, and Z. Zhang, “A Comprehensive Review on Medical Image Classification Using Deep Learning,” Frontiers in Medicine, vol. 8, 2023.
[27] Google Colab, “Google Colaboratory,” Online Resource, 2023.
[28] A. Shorten and T. M. Khoshgoftaar, “A Survey on Image Data Augmentation for Deep Learning,” Journal of Big Data, vol. 6, no. 1, pp. 1–48, 2019.
[29] F. Chollet, “TensorFlow and Keras API Documentation,” TensorFlow.org, 2023.
[30] J. Brownlee, “Optimizing Deep Learning Models with Adam and Adaptive Learning Rate Scheduling,” Machine Learning Mastery, 2021.
[31] S. Shorfuzzaman, M. S. Hossain, and G. Muhammad, “A Deep Learning-Based Framework for Pneumonia Detection from Chest X-Ray Images,” Healthcare Informatics Research, vol. 26, no. 4, pp. 243–252, 2020.
[32] S. Rajaraman, J. Siegelman, and S. Antani, “Performance Evaluation of Deep Neural Ensembles toward Tuberculosis Screening from Chest Radiographs,” IEEE Access, vol. 8, pp. 41342–41354, 2020.